<legend id="axlin"><track id="axlin"></track></legend>

        <cite id="axlin"><rp id="axlin"><pre id="axlin"></pre></rp></cite>
          精品无码久久久久久久久久,精品国产美女福到在线不卡,亚洲成人www,亚洲AV无码破坏版在线观看,国产精品综合一区二区三区,久久亚洲精品11p,风韵丰满妇啪啪区老老熟女杏吧,国产精品免费久久久免费
          熱搜: 佳士科技  irobot  工業機器人  機器人  ABB  機器人產業聯盟  發那科  庫卡  碼垛機器人  機械手 

          谷歌研究院在化學發力:應用機器學習技術預測分子性質

             日期:2017-04-18     來源:雷鋒網    作者:liaiai     評論:0    
          標簽:
            最近,機器學習在化學領域的應用有很大進展,特別是化學搜索問題,從藥物篩選、電池設計到OLEDs設計,催化劑的發現。 歷史上化學家使用薛定諤方程做數值近似來解決化學檢索問題,如使用密度泛函理論(DFT),然而近似值的計算成本限制了搜索的規模。
           

           
            為了能夠擴大搜索能力,雷鋒網了解到已有幾個研究小組使用DFT生成的訓練數據,創建ML模型來預測化學性質,例如Matthias Rupp等用機器學習模型來預測各種有機分子的原子化能,J?rg Behler 和 Michele Parrinello引入DFT勢能面的一種新的神經網絡表征。在這些工作的基礎之上,谷歌研究院在QM9基準數據集(配有DFT計算的電子,熱力學和振動性質的分子集合)上應用了各種機器學習方法。
           
            谷歌研究院發布了兩篇論文,介紹了他們在這一領域的研究,研究工作由Google Brain團隊,Google Accelerated Science團隊,DeepMind和巴塞爾大學合作完成。 第一篇論文《Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy》調查了回歸分子和分子表征的選擇對快速機器學習模型的影響,模型用于構建有機分子的十三個基態電子性質,每個回歸/表征/性質組合的性能通過學習曲線評估,該曲線描繪近似誤差,以此作為訓練集大小的函數。論文在QM9基準數據集上測試了多種機器學習方法,并集中改進最有希望的深層神經網絡模型。
           
            第二篇論文《Neural Message Passing for Quantum Chemistry》描述了一種稱為消息傳遞神經網絡(MPNN)的模型族,將其抽象地定義為包含很多對圖形對稱性具有不變性的神經網絡模型。研究團隊在MPNN模型族中開發了新變體,性能明顯優于QM9基準測試的所有基準測試方法,另外某些目標的性能改進了近四倍。
           
            從機器學習的角度來看,分子數據之所以有趣,原因之一是一個分子的自然表征以原子作為邊界的結點和鍵。能夠利用數據中固有對稱性的模型更容易泛化,這很容易理解,卷積神經網絡在圖像識別上之所以成功,一部分原因是模型能夠記住圖像數據中的一些不變性知識,比如把一種圖片中的狗挪到圖片左邊還是一張狗的照片)。 圖形對稱性這一固有特征是機器學習處理圖像數據非常理想的性質,在這領域也有許多有趣的研究,例如Yujia Li等研究了結構化圖片的特征學習技巧,David Duvenaud等應用圖像神經網絡學習分子指紋信息,Steven Kearnes等提出一種機器學習模型用于無向圖的學習。盡管這一領域已有所進展,谷歌研究院希望找到化學(和其他)應用模型的最佳版本,并找出文獻中提到的不同模型之間的聯系。
           
            谷歌研究院提出的MPNN模型提高了QM9數據集任務(預測所有13種化學性質)的最好性能,在這個特定的數據集上,他們的模型可以準確地預測13種性質中的11個,這樣的預測性能已經足夠準確,能對化學家未來的應用有幫助。另外,此模型比使用DFT模擬要快30萬倍。但是在MPNN模型走向實際應用之前還有很多工作要做。實際上,MPNN模型必須應用于比QM9數據更多樣化的分子集合(例如數目更大,變化更大的重原子集合)。當然,即使有了更真實的數據集,模型的泛化性能還是很差。克服以上兩個挑戰需要解決機器學習研究的核心問題,例如泛化。
           
            預測分子性質是一個非常重要的問題,它既是先進的機器學習技術的應用場景,也為機器學習帶來了非常有趣的基礎研究課題。最后,分子性質的預測有助于造福人類的新藥物和材料的設計。谷歌科學家們認為傳播研究成果,幫助其他研究者學習機器學習應用都是及其重要的。
           
           
          更多>相關資訊
          0相關評論

          推薦圖文
          推薦資訊
          點擊排行
          主站蜘蛛池模板: 日韩中文日韩中文字幕亚| 国产一级二级三级毛片| 久久精品免视看国产成人| 亚洲高潮喷水无码AV电影| 性色在线视频精品| 亚欧洲乱码视频一二三区| 精品国产粉嫩内射白浆内射双马尾| 亚洲精品乱码久久久久久不卡| 九九热精彩视频在线免费| 国产玖玖玖玖精品电影| 又粗又硬又黄a级毛片| 国产精品理论片| 免费人成视频网站在线观看18| 亚洲天堂精品一区二区| 亚洲综合久久精品国产高清 | 成年女人免费碰碰视频| 枞阳县| 国产日韩AV免费无码一区二区三区 | 沙田区| 亚洲精品成人区在线观看| 超碰成人人人做人人爽| 遵义市| 亚洲天堂领先自拍视频网| 国产成人综合95精品视频| 日韩精品中文字幕亚洲| 婷婷丁香五月激情综合| 亚洲欧美不卡视频在线播放| 狠狠色噜噜狠狠狠狠777米奇| 国产麻豆精品av在线观看| 国产成人综合在线女婷五月99播放| 国产成人精品中文字幕| 全州县| 亚洲国产激情一区二区三区| 成年在线观看免费人视频 | 婷婷四房播播| 色综合久久中文字幕综合网| 人妻无码不卡中文字幕系列| 久久国产精品免费一区| 日韩精品一区二区三区激情视频| 成人一区二区人妻不卡视频| 在线精品国产中文字幕|